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Extinction cross section of an arbitrary body in a viscous incompressible fluid
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When analyzing time-dependent Stokesian flow around an arbitrary body in terms of time-harmonic
phasors, analytic techniques commonly used for frequency-domain scattering can be brought to bear. A
common measure of the scattering response of a body is the extinction cross section. However, as the
wave number for a Stokesian flow is necessarily complex, the usual interpretation of the extinction cross
section is untenable for this problem. It is shown here that a detector-based interpretation of the extinc-
tion cross section is unambiguous and experimentally relevant. An almost exact formula is derived for
the extinction cross section for flow around an arbitrary body. Computed values for the cross section are
presented for a spherical body using two different boundary condition cases: pure stick (i.e., no slip) and

pure slip.

PACS number(s): 47.50.+d

I. INTRODUCTION

Frequency-domain treatments of boundary-value prob-
lems are commonplace in electromagnetism and there is
significant mathematical unity between electromagnetism
and fluid mechanics [1,2]. Therefore, when the equations
describing the flow of a slow viscous fluid are
transformed to frequency space, a large number of tech-
niques commonly employed for electromagnetic scatter-
ing become available. This was noticed by Felderhof
about two decades ago [3,4] and he has since played a
major role in the use of scattering techniques for solving
boundary-value problems in fluid mechanics [5,6].

Typically, in fluid mechanics, when a body is imposed
in a flow field, the flow is described using solutions for the
total velocity and pressure fields that incorporate the
consequence of the body’s presence [7,8]. When examin-
ing the flow field using a scattering approach, the total
velocity and pressure fields must be broken up into two
parts: a specified incident field and a scattered field. The
scattered field as well as the incident field are expanded as
series of appropriate basis functions. The coefficients of
expansion of the scattered field are related to those of the
incident field via a matrix operator. This matrix operator
is dependent on (i) the frequency; (ii) the shape, the size,
and the constitutive relations of the scattering body; (iii)
the constitutive relations of the fluid; and (iv) the bound-
ary conditions prevailing at the bimaterial interface. Let
us also note the use of this approach in fluid statics [9].

One measure used to describe the effects of a scattering
body in an incident field is the extinction cross section
C.. The extinction cross section has its basis in the
principle of conservation of energy. In electromagnetism
and acoustics, a common analytic method for calculating
C. is to examine the energy flux change, due to the pres-
ence of a scattering body, on the surface of an arbitrary
bounding region [10,11]. When the ambient medium is
absorbing, the energy loss due to absorption becomes
dependent upon the volume of the bounding region;
therefore, no method can be used that requires the in-
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tegration over some arbitrary bounding region. An alter-
native method is to consider the energy received upon the
surface of a detector placed in the forward scattering
direction [12]. The energy received by a detector is al-
tered due to the presence of the body. The extinction
cross section is equivalent to the area of the detector that
would have to be covered up or removed to give an ener-
gy alteration equivalent to that due to the presence of the
scattering body in the field. This alternative, detector-
based, approach has been used in the electromagnetism
literature [13,14]. Since the wave number in fluid
mechanics is complex, the classical approach [10] will not
work; but the detector-based method will, and it forms
the basis for this paper.

The extinction cross section is quantitated in the alter-
native, detector-based, approach as

Ay
o

i

Co =(U—U;) (1)
Here U is the rate of change of the energy normally in-
cident on a planar detector of area 4, when the scatter-
ing body is present and U; is the rate of change of energy
normally incident on the detector when the body is not
present. The formulation for C,,, presented here is valid
for any arbitrary body.

II. PRELIMINARY ANALYSIS

Time-dependent, incompressible, viscous flow is
governed by the equation for the conservation of momen-
tum and the continuity equation

Dv(r,t)
Dt

V-¥(r,)=0 . (2b)

—uV®(r,t)+Vp(r,t)=0, (2a)

Here p is the mass density and p is the coefficient of
viscosity; V(r,t) is the velocity vector and p(r,t) is the
pressure, both functions of the position r and time ¢;
D /Dt is the material time derivative. In order for us to
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apply scattering techniques, these equations must be
linearized by setiing the convective acceleration to zero.
Then we obtain the two equations

p%—uv%(r,twvmr,z):o R (3a)
V-¥(r,t)=0, (3b)

of which the first one describes Stokesian flow. When
harmonic time dependence is assumed, i.e.,

¥(r,t)=Re[v(r)e ~i] ,

4 4)
p(r,)=Re[p(r)e "],

with i =V/(—1) while v(r) and p (r) are phasors, (3a) be-
comes

kzv(r)+V2(r)—in(r)=0 ) &)
where
(i+1) v
p=UtD) |ap 6
V2 u ©

is the complex wave number. Equation (3b) transforms
likewise to

V-v(r)=0. )]

Thus time-dependent flow has been formulated in the fre-
quency (w) domain; see also a review paper by Criminale
and Smith [15]. Equations (5) and (7) can be solved using
spherical harmonic expansions of v(r) and p(r) [3-8].
Very importantly, since the wave number k is complex,
the fluid has to be treated as an absorbing medium in the
context of scattering theory.

It is convenient in solving (5) and (7) to decompose the
velocity phasor into a longitudinal component v, and a

solenoidal component v,:
v=v;+v,, VXv;=0, V-v,=0. (8)

Substituting these definitions into (5) and (7) leads to an
equation for v, and v,. After assuming

v, =——=Vp, 9)
1 /.Lk2 D

we obtain
Vv, +k*v,=0 . (10)

But V-v=0 because of incompressibility, giving
V3 =0. (11)

Each of the three fields v,(r), v,(r), and p(r) is ex-
pressed as the sum of scattered components (v,s s Vis and

Ps.) and incident components (v;, v;, and p;). The in-

cident fields exist when the scattering body is not present.
For this work the incident field is chosen to be a plane,
transverse velocity wave propagating along the z axis. In
choosing a purely transverse incident wave we eliminate
the consideration of any incident pressure; thus

v,(r)=Ve™*, p.=0 (12)

with V-Z=0. Here and hereafter every unit vector is
decorated with a caret and the Cartesian as well as the
spherical coordinate systems have been used.

Parenthetically, we observe that (10), a Helmholtz
equation, bears comparison with the differential equation
governing the electric field phasor in an isotropic dielec-
tric medium. But (9) does not correspond to the equation
satisfied by the velocity phasor of an acoustic wave prop-
agating in an inviscid fluid. The reason is that the veloci-
ty phasor of the acoustic wave, although purely longitu-
dinal, is not constrained by (7). As is clear from (11), the
longitudinal velocity phasor in our work does not propa-
gate.

III. POWER DENSITY CALCULATIONS

Since the wave number k for a Stokesian flow is com-
plex, C,,, must be calculated using the detector-based ap-
proach mentioned in Sec. I. The detector is placed on the
positive z axis, in the forward scattering direction (i.e.,
6=0) with its face perpendicular to the z axis, as shown
in Fig. 1. We assume that the detector is planar and that
it is placed far enough away from the body to allow far-
zone approximations of the forward scattered field to be
valid. In the far zone, the distance z; to the detector is so
large that the solid angle Q,= 4, /z2 subtended by the
detector at the origin is small and thus only the forward
scattered field is gathered by the detector. The maximum
radius of the detector R, is assumed large enough such
that the detector can gather all of the forward scattered
field to_ calculate the extinction cross section:
R, >V 7wz, /2]k|.

For a viscous, incompressible fluid the rate of change

detector

FIG. 1. Coordinate system used, showing the incident plane-
wave direction.
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of the energy per unit volume E (r,#) can be expressed as
E(r,t)=V-[F(r,t)V(r,t)—p(r,t)¥(r,1)] , (13)
where the shear stress tensor #(r,?) is defined by
Fr,t)=p[V¥(r,t)+¥(r,t)V] . (14)
Let
S(r)=(Z(r,1)-9(r,)—p(r,)¥(r,1) ),
=1Re[z(r)-v*(r)—p (r)v*(r)] (15)

be the total time-averaged power flux density, 7 being the
phasor analog of 7 while the asterisk denotes the complex
conjugate. Now we can define the rate of change of ener-
gy U on the detector’s surface in terms of S(r) as

v=[,snada, (16)

where 1 is the unit normal to the detector’s surface. For
a planar detector located in the forward direction,
fi=2~T over the detector surface because (1, << 1; thus
(16) may be approximated to

U= fAd?-S(zd’z‘)dA ) (17)

The field quantities 7, v, and p are all written as the
sum of incident and scattered contributions: v=v;+v,
p =p; tDp,and r=1; +7,. Then,

S=1Re[(z;vi —p;V] ) (T Vi~ P Vi) (18)
+(Isc'V7+If'Vsc‘Pch? _pi*vsc)] . (19)

For convenience let us break S up into three components

S,=4Relz;v}—p;vi], (20)
S;=3Re[1 Vi~ P Vil 5 21
SH:%Re[Isc'vt?+I?'vsc_pscvi* _pi*vsc] . (22)

Here S, is the power flux density due only to the incident
field and S; is the power flux density solely due to the
scattered field.

With the incident wave defined in (12), the shear stress
1; due to the incident field becomes

7, =ikp(VZ2+2V)e (23)

We can orient our coordinate axes such that V=VF%
without loss of generality; hence

T, =ikuV (XE+1R)e’* | (24)
Only the radial component of S appears in (17); therefore,
using the definitions for shear stress, (14) and (23), we ob-

tain

?-s,.=fziRe[(ik)e“k—k*>Z]| 14k

=—fzie—“mik12| V{2Im[k] , (25)

. . v,
I"SIZ%RC H (V;;'V)(r'vsc)+v:°. ar
_?v:cpsc ] ’ 20
_ av
T-Sy=1Re ekt |y (R-V)(Evg)+%- a:c

—X-(ik*v,+1T-v,)

| e

IV. FAR-ZONE APPROXIMATION

—(RT)pe.

in the forward direction.

As our detector lies far from the scattering body, the
far-zone approximation (i.e., |k|r— o) of the scattered
field quantities may be used. We need to examine the
asymptotic behavior in |k|r of three quantities (i.e.,
V., OV /0r and p ) keeping in mind that the behavior
with respect to kr of v is different for its longitudinal
and solenoidal components (see the Appendix). In mak-
ing the far-zone approximation, we discard all those
terms of order (kr) 2 and smaller. From the scattered
field expansions given in the Appendix, we see that

Ve (D) ~ 0, (28)
|klr>>1
eikr “
vs°(r)4k\r~>>17g‘(r) ’ 29)
avsc(r) eikr (A) (30)
or |klr>>1 kr &
1 '
psc(r)|k|r>>1 Kr WP (31)

where D' is a constant and is defined along with the vec-
tor functions g,(T) and g,(T) in the Appendix [Egs. (A4)
and (AS)].

These limiting expressions allow us to simplify (26) and
(27) to

aa exp(—2Im[k]r) ., ~ A
#-8~ 5 Re ke EOE®) . G2
. n ik(r—2z)
TS = 2 Re |exp l—2 Im[k]z T

X V*R-[g,(T)—ik*g,(T)]
e—ik*z
kr

V*(£-X)D’ (33)

for locations on the detector. But T~Z on the detector
and g,(Z)=ikg,(Z); hence
iklgl(’i)lzex (—2Im[k]r) (34)

t.s.=£
T-S; 2Re PE®
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T Sy=—Im[k]uexp(—2Im[k]z;)

ik(r—2z,) I

XRe | V*(%-g,(2)< = (35)
on the detector.
V. EXTINCTION CROSS SECTION
Using (34) and (35) in (16) for U gives
UI=£2‘—Re iklgl(a)|2fAdi|_ki|12m7[2'idA (36)
=— Pl A,4lg,(2)PIm[k
2 | e | Adla@PImik], (37)
Uy=—Tm[klue ™ ¥
ik(r—z;)
X Re V*(’i-gl(’z‘))fAde——k;——dA , (38)
and
U,~=——,ue_um[k]z"%i|VIZIm[k] , (39)

where U;, Uy, and Uy correspond to S;, S;, and Sy, re-
spectively.
The remaining integral in Uy; can be cast in the form

Zq
ikr |1—— dxdy . (40)

1
fAdeXp 7(;

In the asymptotic limit |k|r— oo, this integral can be
evaluated using the method of stationary phase [16]; thus

ik(r—z;)

e 2mi
fAd o dx dy = P (41)
and
—2Im[k]z A~ A
Up=Im[k]ue ety V*(X-g,(2)) % (42)

In (1), we need U — U;=U;+ Uy. But Uy is of the or-
der (|k|z;) 2 and quantities of this order may be neglect-
ed in the far zone. Therefore, from (1) we get

_Undg
ext — U .

1

(43)

Using (39) and (42), we now get a very simple expression
for the extinction cross section as

4 * Py A
Cve)n:E “/7.71-2 Im %(Xgl(Z)) (44)
%-8,(2)
=—d4mlm | —= (45)

It is usual in the electromagnetism literature to define a
nondimensional quantity called the extinction efficiency
Q- This quantity is the ratio of the extinction cross

section to the cross-sectional area of the scatterer project-
ed on the plane to which the incident wave vector is per-
pendicular. Let this cross section area be equal to the
area of a circle of radius a; then

i-gl('i)
(ka)*V

(46)

Cext
QEXt = 2 = 4 Im
Ta
is the extinction efficiency.

VI. RESULTS FOR A SPHERICAL BODY

The spherical harmonic expansion of the incident wave
(12) is shown in the Appendix as Eq. (A8). The scattered
pressure and velocity fields are also written as expansions
in terms of spherical harmonic functions; see Egs.
(A1)=(A3) in the Appendix.

The incident and the scattered expansion coefficients
have to be related through the boundary conditions. In
order to illustrate the developments of the previous sec-
tions, we considered two distinct sets of boundary condi-
tions. For either set, the body was considered imperme-
able so that

f, v=0 47)

on the surface of the body, where i, is the unit vector
normal to the surface of the scattering body. Next, as the
flow tangential to the body must be described at the sur-
face, we considered two separate cases: pure stick (i.e.,
no slip) and pure slip. For the pure stick case the tangen-
tial velocity is specified through

ﬁb Xv=0 (48)
and for the pure slip case we use
ﬁbX[T'ﬁb —pﬁb}=0 . (49)

Incidentally, although pure slip is only possible with an
inviscid fluid and can be thus thought of as a mathemati-
cal artifact, it has physical meaning as a limiting case of
mixed slip-stick boundary conditions; see, e.g., [9].

Upon application of the boundary condition sets to a
spherical scatterer of radius a and subsequent use of the
orthogonality properties of the angular functions in Egs.
(A1)-(A3) and (AS8), the scattered field coefficients may
be determined as

Ay =T AL, [ BT, k)
—ict |, (50)
B =B |07 |
o=~ Ao [ 2L | [ o
~Cpno [111_:_]1((];—2)) 2
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for the pure stick case and

5 = n(ka)"
mne " kah,(ka)+h, _(ka)
A,ima[kah,,(ka)_hn+1(ka)]+cr1ma'k—l(; ’
(53)
L ka) =, - (ka)
Br::ma = _B’}"’U +1 ’ oY
n h"(ka)_—hn—ﬂ(ka)
ka
2 +1 (ka)"~!
3 —=_ 41
Cmnu' mno l n-+1 kahn(ka)_hn—l(ka) ]
| Kajaka) i,y (Ka) (55)
™o | kah,(ka)+h, _(ka) |’

when the pure slip boundary condition prevails. In these
expressions, h,( ) is the spherical Hankel function of the
first kind and of order n, while j,( ) is the spherical Bessel
function of order n. With these scattered coefficients we
calculated g,(Z) and subsequently Q.,,. Values of the
scattering efficiency were calculated for both the pure slip
and pure stick boundary conditions using values for the
normalized radius |k|la of the sphere in the range
(0.5<|kla <50).

Before generating meaningful values for Q.,,, we first
had to confirm that the series in Eq. (A6) converges
within a preset tolerance limit in a finite number of terms.
Figure 2 depicts convergence studies for three different
values of |k|a. The percent error shown in Figs. 2 and 3
was calculated as

-6~ |kla =20 (slip)
- [kla =20 (stick)
-0 [kla= 5 (lip)
@~ [kja =5 (stick)
-0 [kla = 0.5 (slip)
—— [kja = 0.5 (stick)

Percent Error
s
|
T

I L L
0 5 10 15 20 25 30

N (no. of terms in summation)

FIG. 2. Illustration of the convergence of (46) for three
different values of |k|a for pure slip and pure stick boundary
condition sets, the scatterer being a sphere of radius a. The hor-
izontal reference line represents +1% error. Percent error
shown is calculated using (56).

35

N [2
w o
T T

N
o
T

N for 17% error

¥ Fit for curve shown:
5 N =287+1.06 |do — 0.00932 ()

O:AIIII\lllllllkiAlAlIAl(l
0 10 20 30 40 50

et

FIG. 3. Number of terms N required to compute Q. to
within £1% error. The slip boundary condition set was used
for these calculations. The fitted quadratic curve gives esti-
mates for adequate values of N as a function of | k|a for a sphere
of radius a.

) (56)

with g, defined in Eq. (A6). As |k|a increases, the num-

ber of terms N required for convergent values of Q.,, in-
creases also. Since, as seen in Fig. 2, the pure slip case is
the slower one of the two sets of boundary conditions to
converge, we obtained an estimate for a minimum num-
ber of terms required for convergence for either case
from examination of the slip case alone. The number of
terms N required for 1% error in convergence is shown
in Fig. 3, for the pure slip case, when |k|a <50. A poly-

nomial fit to the curve in Fig. 3 shows that
N =2.87+1.06/k|la —0.009 32(|k|a)*> is adequate to
achieve convergence to within +19% error for

0.5=<|kla <50.

With knowledge of the series convergence established,
Q. was computed with confidence. The behavior of
Q... varies considerably for large |k|a and for |k|a —0,
the specific choices of the set of boundary conditions not-
withstanding.

For large values of |k|a, Q.,, is a rapidly increasing, os-
cillatory function. This behavior is shown in Figs. 4 and
5 for the stick and slip cases, respectively. The sequence
of plots in both of these figures shows the same data for
Q.. plotted on successively smaller scales in order to
show the details of the oscillations. These sequences of
plots demonstrate the oscillatory nature of Q. over a
range 0= |k|a <20 and similar plots were obtained for
higher values of |k|a.

The data points in Fig. 6 represent the positive and
negative extrema of Q.,, with respect to |k|a for both
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FIG. 4. Q. for the pure stick case as a
function of |k|a; the multiple plots show the

same data plotted on axes scaled successively
smaller.

2.00x107 f 5.0x10° [
0 L
0.00x10 ,
e 2.5x10° |
o —2.00x10 g
& -4.00x107 | 0.0x10°
% 6.00x107 | :
POGCR: -2.5x10° |
-8.00x10 ;
-1.00x108 ———— ——  _5.0x10° ©
: o 5 10 15 =20 >
lkla
30000 150
18000 90
£ 6000 30
o -6000 -30
~18000 -90
~30000 ettt ~150
0 3 6 9 12 15

lkla

boundary condition sets (see also Table I). When these
extrema are plotted together on a semilogarithmic graph,
as shown in Fig. 6, the envelopes of the oscillations of
Q.. turn out to be exponential functions of the form
Ae®Ke For large values of |k|a,|Q,,| for the stick case
shows positive and negative peak values over two orders
of magnitude larger than |Q,,.| for the slip case.

In order to examine the limiting case |k|a —0, we can
substitute the low-argument approximations for the
spherical Bessel and Hankel functions [17] in (50) and
(53). When these coefficients are then substituted into
Eq. (A4), we get

- %K(ka)[cos() cospO—sing$]+0((ka)?)
(57)

gl(r)lk|:—>0

for the pure stick case and

lkla

Bi®), ~ - %(ka)[coso cos¢d—singd]+0((ka)?)

(58)

for the pure slip case. On using these limiting expres-
sions in (46), we obtain

1

~ -3l 5
Qenlkla—»O |k|a 59
for the pure stick case and
3vV2 1
~ =22 60
Qtioe 2 Tkla (60)

for the pure slip case. Calculated values for Q.,, are pot-
ted in Fig. 7 for values of |k|a <1. Throughout this re-
gion of low |k|a values, Q.,, <O for both sets of boundary
conditions.

1.0x10° | 5000
6.0x10* 3000
% 20 x10* 1000
S _2.0x10* -1000
-6.0x10" —3000 |
-1.0x10° -5000 |—+—f—t—f——-
0 5 10 15 20
lkla FIG. 5. Q. for the pure slip case as a func-
500 8.0 tion of |k|a; the multiple plots show the same
g o " data plotted on axes scaled successively small-
300 5.3 r er.
2.7
%
100 L
’ 0.0
-100 oo
—300 -5.3 |
-500 -8.0 |
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FIG. 6. Positive extrema of Q.,; are shown in the top graph,
the negative on the bottom. Data from the calculations shown
in Figs. 4 and 5 were used to generate these graphs.

O Puresip

A pure Stick J
200 J.L ! il L L 1 ! Ll L
00 01 02 03 04 05 06 07 08 09 10
lkla
FIG. 7. Q.. for small spherical scatterers. Note that

cht °:(|k|a)_1 when lk|ﬂ <<1.
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An interesting difference between electromagnetism
and fluid mechanics is afforded by the small |k|a expres-
sions. In electromagnetic parlance, g,(T) is called the
far-zone scattering amplitude and it is proportional to
(ka)? for the so-called electrically small scatterers (i.e.,
|kla <<1). Hence Q,,, is proportional to |k|a when
|kla << 1; see [12]. What we observed from (57) and (58)
is that g,(T) is proportional to ka, and Q.,, therefore to
1/|kla, for small scatterers in a Stokesian flow. The
scattering amplitude of a small scatterer is proportional
to its volume for electromagnetic scattering, but turns
out to be proportional to the cube root of its volume for
the scattering of Stokesian flow. This observation needs
further verification for nonspherical scatterers immersed
in a Stokesian flow.

VII. DISCUSSION AND CONCLUSIONS

Because of the similarities in the formulation of elec-
tromagnetics and Stokesian flow, we applied analytic
methods commonly reserved for electromagnetics to fluid
flow problems. Using frequency-domain scattering
methods to analyze the effect an arbitrary body will have
when placed in a Stokesian flow, we derived a simple for-
mula for the extinction cross section of the body. A
transverse incident plane wave flow was assumed and all
fields were expanded in spherical harmonics and
simplified using the far-zone approximation. The special
case of a spherical scatterer was investigated.

Both negative and positive values of Q.,; are found in
Figs. 4, 5, and 7. The Stokesian flow is inherently absorb-
ing or lossy due to viscous friction. This absorption is re-
sponsible for the wave number k being complex valued.
The presence of absorption tells us that attenuation takes
place in the fluid even without the presence of a scatter-
ing body.

When a body is placed in such an absorbing medium,
negative values of Q. are possible and can be explained
satisfactorily as follows. If the scattering body is less ab-
sorbing than the surrounding medium, more energy may
be intercepted by the detector when the scattering body is
present than when it is absent [13]. The presence of a
body having less absorption than the surrounding medi-
um may reduce the overall attenuation of a plane wave
propagating in the medium, thus allowing higher fields at
the detector.

We also considered two different sets of boundary con-
ditions: pure slip and pure stick. The extinction
efficiency behaves similarly as a function of |k|a for either

TABLE 1. Exponential fit parameters for the envelope of the local maxima of Q. as shown in Fig. 6

(the equation being fitted is | Q.| = de®*%),

Fit Stick case Slip case
parameter Qext > 0 Qext < 0 Qext > 0 Qext < 0
A 8.177x10™* 1.126 X 1073 6.917Xx 107 6.580X107¢
B 1.290 1.283 1.227 1.227
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set. The major difference is that the pure stick case
shows consistently higher values of |Q,,,| than the pure
slip case for the same |k|la. The slip boundary conditions
are defined, in part, by setting the friction on the surface
of the scatterer to zero. Therefore, the difference in ex-
tinction between the two sets of boundary conditions is
caused by the presence of viscous friction on the surface
of the scattering body when the pure stick boundary con-
ditions prevail.

The concept of the extinction cross section is valid for
any body immersed in a Stokesian flow into which a
transverse incident velocity wave is launched. The ex-
tinction cross section is a direct measure of the influence
a body has on the launched flow and as such can be used
to predict the effect of imposing a body in a flow. Our

1
mno (k )n+l

Po(r)=pk 3 2 24

n=0 m=0 o=e¢,0

P(cosO)X

=3 3 = ,,.,w| 1

n=0 m=0 o=e0 (kr)n+2

4 dP;*(cosf)

cos(mg)
sin(ma)

—(n +1)P(cosf) X l

detector-based approach for extinction cross section is
similar to insertion-loss measurements common-place in
the areas of microwave and acoustic circuitry. Similar
measurements may be possible in fluid mechanics if the
spectral contents of the source and the detected signals
are analyzed. As extinction cross section has found wide
use in electromagnetism, we hope that it will find many
applications in fluid dynamics also.

APPENDIX

Outside the minimum sphere circumscribing the body,
the scattered fields due to an arbitrary body can be ex-
panded in terms of spherical harmonic functions [2,16]
that are regular at infinity as

] > (A1)

cos(m¢) |
sin(mg)

cos(mé) | .  mP[(cosf) —sin(mé) | .
sin(mg) sin@ cos(mg) o, (A2)

do
and
h, (kr) . cos(me) | |
sc, DA Clon(n+1) P P(cosf)X sin(m ) T
mP,"(cos6) —sin(mé¢) , 1 d - dP"(cos0) cos(ma) | | .
| Banohn kN0 0= X | costmg) [+ Comoier g PR35 X |sin(m )
dP)(cos6) cos(mg) 3 mP,(cos6) —sin(ma@) | | .
+ |—B2, . h, (kr)TX sin(md) Cm'wk o [rh (kr)]T cos(mg) ) (A3)

When the summation index o is even (e), the upper function in curly brackets is used and when o is odd (o), the lower
function is used. The associated Legendre functions are denoted by P,*(cosf). In the forward direction only the m =1
terms in the scattered velocity expansions survive, while both the m =0 and 1 terms survive in the expansion for the
scattered pressure.

In the far zone the functional kr dependences can be simplified by utilizing the following asymptotic tendencies of the
spherical Hankel functions:

1
(kr)?

eikr
h,(kr) ~ —j (¥
lklr>>1 kr

’

1 d elkr _
=L lpm, (kr)] ~ j
kr dr[r n{ r)](k|r>>1 kr

1
(kr)? |~
From the far-zone approximation of v, the kr dependence [shown in (28)] can now be factored out from (A1)-(A3),
yielding two vector sums involving only the angular functions:

mP"(cos0) {—sin(mtﬁ) ]
—r +

3 g—(n+D)
B cos(mdo)

amn

;  ._,dP;(cos) [cos(mqﬁ)]lA
jonn T

sinf gmn do sin(m¢)

(A4)

nar, dP(cOSO) [cos<m¢)] s e

mP(cos0) —sin(me) | |
omn do sin(m ¢ ) "~ sing ’

sinf cos(me)
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] n

=2 2 2

n=1 m=0 oc=e,0

_p3 kmndP,:"(cosB) {cos(md))

3
Bumn

k—n

sin@

+ +C;

omn

omn do sin(md)

P*(cos6) —sin(m¢)
mP(cos [ ¢ =

cos(mo)

ki—n+1

. —n+1 @P(cos0) cos(mae) | | .
amnkl d0 sm(qu)

(AS)

sin® cos(ma)

mP(cosf) l—sin(mqﬁ) ]

Also, from the far-zone approximation for pressure we are able to define the constant D’ ‘kA
With the detector placed in the forward scattermg direction, the assumption that Q, <<l entalls T=2Z and 6=0.

Since [dP(c0s0)/d8)g—o=[P}(cos8)/sinb]y—o=

(n+1)/2, we get

@)= 3 HE i on (B}, +C, R+ B2, +Ch, 081 = S 81 » (A6)
n=1 n=1
gz(z)——kz ”—ZH) "{(BJ,, +iC},)X+(—B2, +iC3, ¥} . (A7)
n=1

Hence g,(Z)=ikg,(Z). In practice the summation index n extends only over some finite range 1<n <N, where N is
large enough so that the series in (A6) converges to within a desired tolerance limit.
The incident velocity phasor can be expanded in terms of spherical harmonic functions [18] that are regular at the

origin as
© n . ],,(kr)
=2 2 3 [Cuon(n+l) kr P (cosf) X
n=1 m=0 o=e,0

mP™(cos6) [——sin(mqﬁ) ]

cos(mgb)HA

sin(ma)

dP™(cos6) [cos(mdn ] ‘A

1 1
+ ano]n(kr) sin@ cos(m¢) mngk dr [r]n kr)] de sin(md¢)
. dP[(cos0) cos(m¢) . 1.d mP,"(cos6) —sin(mé¢) | | .
Ml A T sin(m ) |+ Cmno ey g I D155 cos(me) | |¢ A8
in which the only nonzero incident expansion coefficients are B},,=i"[(2n +1)/n(n +1)]V and C!},,= —iB},, when
v, (T)=VZe' .
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